Your Complete Guide to Autoimmunity and Allergy Testing

This article originally appeared on Healevate.

Why do you get hay fever every spring, while others are totally unaffected? Why can one person cuddle up with their dog, while you break out in hives from merely petting the furry little guy? Allergies and autoimmunity are complicated conditions that exist on a spectrum, and have a few things in common.

  1. The underlying cause of both is inflammation.
  2. Having the right genetics predisposes you to developing them.
  3. The epigenetic factors responsible for manifesting the symptoms are probably more important than the genes themselves, since the environmental influences on the genes are what cause them to be turned on or off.

Epigenetics are all of the environmental factors that control your genes, so if you’re stressed out, not sleeping, eating an inflammatory diet, not exercising, and are surrounded by toxins in your home and on your body, there’s a good chance you’ll have some kind of inflammatory symptoms. These could be itchy, watery eyes from allergies or fatigue, brain fog, and constipation from an autoimmune condition.

These factors cause your immune system to kick up and start overreacting to normal stimuli, which ultimately produces systemic inflammation. Identifying the symptoms can help you get to the bottom of what’s causing your autoimmunity or allergies.

Symptoms of Autoimmunity and Allergies

Autoimmune and allergy symptoms are all on the inflammatory spectrum, so they can literally affect your entire body and cause many symptoms simultaneously.

Immune/inflammation: Asthma, wheezing, coughing, runny nose, post nasal drip, itchy or watery eyes, sneezing, unresolved infections, autoimmunity, swelling, anaphylaxis, and throat closing.

Skin/hair/nails: Dermatitis, eczema, acne, rashes, scaly skin patches, hives, photosensitivity, hair loss, nail pitting, dry eyes, skin, and mouth.

Gastrointestinal: Stomach pain, acid reflux, IBS, gas, bloating, nausea, diarrhea, constipation, gastroparesis (delayed stomach emptying), cankers, and food sensitivity.

Brain and mood: Headaches, brain fog, inability to focus or concentrate, double vision, blurred vision, poor memory, depression, anxiety, irritability, fatigue, lethargy, dementia, and insomnia.

Nerves: Tingling, pins and needles, numbness, and paresthesia.

Hormones: High or low blood sugar, weight gain or loss, excessive sweating, imbalance in thyroid, adrenal, and sex hormones.

Musculoskeletal: Joint and muscle pain, muscle weakness, and fibromyalgia.

Liver: Elevated liver enzymes, poor detoxification, and chemical sensitivity.

Cardiovascular: High or low blood pressure, rapid heart rate, and palpitations.

Which Test Should You Choose for Autoimmunity or Allergies?

Lab testing for allergies and autoimmunity can be exhausting, since the symptoms are vast and systemic.

Allergies are more easily tested, as you can do IgE antibody testing or skin prick testing to identify environmental allergens.

If your symptoms are outside the realm of typical allergies, then further investigation is warranted. Start with general testing to confirm that you have an inflammatory or autoimmune-based condition.

The serum labs for nonspecific markers of inflammation will let you know if you have an inflammatory or autoimmune process going on inside your body. If your symptoms coincide with a specific illness—for example, stomach pain, brain fog, and depression would possibly correlate to celiac disease—then specific testing should be initiated as well.

An important feature of reversing inflammatory, allergic, and autoimmune processes is finding the root causes. GI infections, food sensitivities/intolerances, toxicity, and hormone imbalances are all causes that could be contributing to your condition, and should be identified.

Autoimmunity and Allergy Testing

Allergy tests:

  • IgE antibody testing
  • Skin prick (scratch) testing

General inflammation and Autoimmunity tests:

  • CRP (C-reactive protein)
  • ESR (erythrocyte sedimentation rate)
  • ANA (anti-nuclear antibody)
  • APA (anti-phospholipid antibodies)
  • RF (rheumatoid factor)
  • Lactoferrin
  • Calprotectin

Testing for specific conditions is the next logical step if general testing suggests an autoimmune or inflammatory process, or if your symptoms correlate to a specific condition. For example, TPO (thyroperoxidase antibody) and TGA (thyroglobulin antibody) should be tested for autoimmune hypothyroidism (Hashimoto’s).

Allergy Tests

Environmental allergies to pollen, trees, weeds, dust, mold, and animals are fairly common, affecting over 40 million Americans annually.

Allergies are a hypersensitivity reaction to a substance that normally doesn’t cause a problem in most people. Once the substance is encountered and your immune system identifies it as foreign, it creates specific antibodies against the substance’s antigens (proteins).

IgE antibodies are one of several types of antibodies. They’re created when your body has a true allergic response to a substance and is considered a fixed allergy in that it will almost always provoke an immune response when the allergen is encountered. This type of testing analyzes your blood for the presence of IgE antibodies.

The skin prick or scratch test is often used as a quick screen, as it can be completed during an office visit. This test is administered on your back or arm, and anywhere between 20 to 40 substances can be tested, from dust, dander, and pollen to mold and foods.

A drop of the allergen is placed on your skin, and then a lancet is used to prick the skin, allowing the allergen to penetrate. Fifteen minutes later the results will be interpreted. A positive reaction will form a raised red bump that may itch (called a wheal). This type of test is usually performed in your doctor’s office.

General Inflammation and Autoimmunity Tests

CRP (C-reactive protein) is a protein made largely in the liver, immune, and fat cells in response to various inflammatory processes, such as tissue damage, infection, and disease states.

It’s released into the blood within a few hours of the inflammatory event; thus, it’s called an acute phase reactant. It’s a general marker of inflammation and isn’t specific to any particular condition. It can be used to track inflammatory and autoimmune conditions, as well as monitor flares. It’s often ordered with an ESR.

ESR (erythrocyte sedimentation rate) describes the inflammatory process in which red blood cells (erythrocytes) clump or aggregate together, causing sedimentation. The ESR measures the rate at which the erythrocytes settle in one hour in a vertical tube. It’s useful for assessing tissue destruction and levels of inflammation. Similar to CRP, the ESR is also a non-specific marker.

ANA (anti-nuclear antibody) is measured to assess levels of antibodies produced against the nucleus of a cell. It can be useful for identifying autoimmune conditions that affect multiple tissues throughout the body, such as lupus (SLE). ANA is a general indicator and isn’t specific to one particular condition.

APA (anti-phospholipid antibodies) reflect antibody production against phospholipids, which are required for blood clotting. APA is useful in blood clotting disorders, some of which are autoimmune, and for diagnosing lupus.

RF (rheumatoid factor) is an antibody that’s detectable in up to 80% of rheumatoid arthritis (RA) cases, but it can also be present in other autoimmune conditions such as lupus, scleroderma, and Sjogren’s. It can be helpful in distinguishing RA from other arthritic disorders.

Lactoferrin is a protein produced to combat inflammation. Lactoferrin can be measured in a stool sample and reflects inflammatory processes. It’s useful in diagnosing ulcerative colitis (UC) and Crohn’s versus non-inflammatory IBS. Since it isn’t specific, other causes of inflammation must be investigated such as dysbiosis, GI infection, and food intolerance.

Calprotectin is another protein measured in the stool that’s produced by a white blood cell called a neutrophil. Since neutrophils aggregate at the site of inflammation, calprotectin is more useful for diagnosing UC and Crohn’s against non-inflammatory IBS, as well as monitoring their progression. Other sources of inflammation should still be ruled out with other tests.

Testing for Specific Conditions

These are some of the common antibody (Ab) and gene tests associated with specific conditions. They may be helpful in diagnosis, along with other advanced tests and procedures such as biopsy or imaging.

Hashimoto’s: Thyroperoxidase Ab (TPO) and Thyroglobulin Ab (TGA)

Graves’: TPO, Thyroid Stimulating Hormone Receptor Ab (TSHR Ab), Thyroid Stimulating Immunoglobulin (TSI)

Diabetes (Type 1): Islet Cell Ab (ICA), Insulin Autoantibody (IAA), Glutamic Acid Decarboxylase Ab (GADA)

Autoimmune Hepatitis: Smooth Muscle Ab (SMA), Liver Kidney Microsomal Type 1 (Anti-LKM-1)

Ulcerative Colitis: Perinuclear Anti-Neutrophil Cytoplasmic Ab (pANCA)

Crohn’s: Anti-Saccharomyces Cerevisiae Ab (ASCA), Anti-CBir1, Anti-Omp C

Rheumatoid Arthritis: RF, Myeloperoxidase Ab (MPO), Cyclic Citrullinated Peptide Ab (CCP)

Lupus (SLE): MPO, APA, Anti Double Strand DNA (Anti dsDNA)

Myasthenia Gravis: Acetylcholine Receptor Ab (AChR)

Ankylosing Spondylitis, Juvenile Rheumatoid Arthritis (JRA), Reactive Arthritis (such as Reiter’s Syndrome): HLA-B27 gene test

Celiac: HLA-DQ2 and HLA-DQ8 gene tests, Anti-Tissue Transglutaminase Ab (tTG), Deamidated Gliadin Peptide (DGP), Endomysial Ab (EMA)

There are also specialty lab tests for celiac that involve testing IgG and IgA antibodies against gliadin, glutenins, gluteomorphins (made during the digestion of gliadin), and tissue transglutaminase. Cyrex Laboratories offers this panel, which is called the Array 3: Wheat/Gluten Proteome Reactivity & Autoimmunity.

Cyrex also offers the Array 5: Multiple Autoimmune Reactivity screen that measures IgG and IgA antibodies against 24 tissues and organs in the body. It includes many of the specific antibody tests, including ASCA, ANCA, TPO, TGA, GAD 65, and APA (discussed previously).

This test is very useful because it screens most of your body at once for AI, and when you have one known autoimmune condition, there’s an increased risk for autoimmune activity against other tissues. The tests in this panel can also be obtained in smaller panels according to condition or tissue type, including diabetes, neurological, and joint autoimmune reactivity screens.

Most of these tests can be obtained and completed by going through Direct Labs, which is a centralized location to buy and organize tests from labs such as LabCorp or Quest, as well as specialty lab companies who do mold and inhalant allergy testing.

Save

When to Test for Blood Sugar and Metabolic Imbalance

This article originally appeared on Healevate.

To tell you that sugar is bad for you would be beating a horse that’s long been dead. We all get it by now. But what exactly does it do that’s so bad?

For starters, it’s a major source of inflammation, tissue destruction, brain degeneration, cardiovascular disease and depression.

Elevated blood sugar literally causes damage everywhere in the body and impacts other hormones, compounding this effect. What’s even worse is that it sets the stage for metabolic syndrome, diabetes and cardiovascular disease.

Low blood sugar doesn’t get as much press, since it doesn’t cause as much damage, but the downstream effects on other hormones are no less important.

Getting your blood sugar and metabolic hormones (such as insulin and cortisol) back in check is essential for reversing inflammation, aging, and many disease processes. Since blood sugar regulation reflects many disorders of metabolism, understanding the symptoms is the first step.

Symptoms of Imbalanced Blood Sugar and Metabolic Hormones

The symptoms of hypoglycemia (low blood sugar) include:

Brain/mood: Lightheadedness, jitters, fainting, dizziness, confusion, headaches, irritability, sadness, blurred vision/double vision, anxiety, hyperactivity, lack of focus.
Energy: Fatigue, weakness, energy surge post-meal or snack, feeling like you’re going to crash when you don’t have food, excessive hunger.
Hormonal: Hormone imbalances, especially low cortisol.
Metabolic: Sweating.

The symptoms of hyperglycemia (high blood sugar) include:

Brain: Brain fog, irritability, difficulty focusing and concentrating.
Neurological: Neuropathy, paresthesia, pins and needles, tingling.
Energy: Lethargy, feeling sleepy post-meal, fatigue.
Skin/hair/eyes: Dark patches of skin on neck, elbows, armpits, and knees (acanthosis nigricans), skin tags, wounds that won’t heal, loss of hair.
GI: Nausea, vomiting, stomach pain, fruity scent to breath, dry mouth.
Metabolic: Increased thirst and urination, rapid heartbeat, shortness of breath, high blood pressure, abdominal fat, high cholesterol or triglycerides, fatty liver.
Hormonal: Hormone imbalances including estrogen, testosterone, and cortisol, PCOS.

How Can I Test for Blood Sugar and Metabolic Hormone Imbalance?

Testing for blood sugar and metabolic hormone imbalance is more straightforward than other types of testing.

The goal is to find out if your blood glucose levels—and the hormones related to blood sugar management and metabolism—are functioning properly.

This can be determined with an initial set of tests that assess blood sugar levels and management, as well as hormone regulation. After initial testing is completed, additional testing may be warranted. If you find that you have elevated blood sugar with poor blood sugar management, evaluating inflammation, lipids, and cardiovascular markers is an important secondary step.

Blood Sugar and Metabolic Testing

Initial testing:

  • Glucose tests: Fasting glucose, 2-hour glucose tolerance test, hemoglobin A1C, and fructosamine.
  • Insulin tests: Fasting insulin and C-peptide.
  • Hormone tests: Adiponectin, leptin, and cortisol.

Secondary testing:

  • Inflammatory tests: Homocysteine, CRP, ApoB, Lp(a)
  • Lipid tests.

Glucose Testing

Fasting glucose (FBG) is the initial test completed when screening for blood sugar abnormalities and diabetes. It measures the levels of glucose in the blood after a period of fasting for at least 8 hours. FBG tells you if your blood sugar is high or low and can reflect metabolic imbalance. Blood glucose levels are largely dependent on 3 factors:

  1. The ability of the pancreas to produce appropriate amounts of insulin, as well the cells having the appropriate response and sensitivity to insulin.
  2. The liver’s storage and breakdown of glycogen (the storage form of glucose in muscles and the liver to be used later as energy).
  3. Adrenal hormone function (cortisol, epinephrine), which also impacts control of blood sugar levels.

Fasting glucose can also be measured daily at home with a glucometer.

A 2-hour glucose tolerance test (GTT) is done to assess how efficiently your body responds to glucose. This test requires an initial fasting blood draw followed by consumption of a 75 mg glucose drink. Two hours later, a second sample is drawn.

Normally, after you consume sugar, your body detects your high blood sugar, which causes the pancreas to release insulin so the sugar can be cleared from your blood and stored. The second measurement should be normal. If you have impaired glucose tolerance or insulin resistance, the blood sugar level will remain high.

Hemoglobin A1c (HbA1c) measures glycated hemoglobin, or glycohemoglobin, in the bloodstream. Glycohemoglobin is formed when circulating glucose combines with the hemoglobin in your red blood cells (RBCs).

RBCs have a lifespan of 120 days, so the amount of glycated (also called glycosylated) hemoglobin is directly proportional to the amount of glucose present in the bloodstream during that period of time.

The process of glycation is irreversible, so the greater the concentration of glucose in the blood, the more it will attach to the RBCs. HbA1c is used to monitor long-term glucose control and assist with the management of high blood sugar.

Fructosamine, similar to HbA1c, forms when glucose binds to serum proteins. Fructosamine levels represent the total amount of glycated protein in the blood. This is an irreversible glycosylation process reflecting the average lifespan of serum proteins—about 14 to 21 days. It’s used to monitor blood sugar control, but it’s less common than HbA1c.

Insulin Testing

Insulin is the hormone secreted by the pancreas in response to glucose in the bloodstream that facilitates the transport of sugars into your cells.

Fasting insulin levels are measured after a minimum of 8 hours without food to detect insulin resistance, as well as high or low blood sugar.

If the pancreas doesn’t produce adequate insulin or the body loses its sensitivity to insulin (insulin resistance), blood sugar will be elevated, while fasting insulin will be low because of the lack of insulin production and high with insulin resistance.

C-peptide levels reflect how much insulin the pancreas is producing. High levels of C-peptide indicate increased insulin production, usually in response to high blood glucose levels or insulin resistance.

This test is useful for monitoring treatment of hypoglycemia and diabetes, since it only measures the body’s insulin production. It can also be helpful in distinguishing between Type I (autoimmune) and Type 2 (metabolic) diabetes, the diagnosis of insulinomas (insulin-producing tumors), and when autoantibodies are produced against insulin. Because of this, C-peptide levels can be difficult to measure.

Metabolic Hormone Testing

Adiponectin is a hormone produced by adipocytes (fat cells) that promotes proper metabolism of sugars (carbohydrates) and fats (triglycerides). It also influences the body’s response to insulin.

High levels are beneficial and indicate efficient cellular energy production. Low levels are associated with metabolic syndrome, obesity, diabetes, and cardiovascular disease.

Leptin is largely produced by fat cells and works in a feedback loop with the brain to regulate appetite and satiety. When sufficient amounts of food are consumed, leptin signals to the hypothalamus, telling the body it’s no longer hungry. Low leptin should signal hunger, and high leptin should signal satiety. The level of leptin you have directly reflects your total body fat.

Leptin deficiency isn’t common, but leptin resistance, much like insulin resistance, definitely is. It reflects the body’s decreased sensitivity to the hormone, resulting in increased production. Even though there are adequate amounts of leptin, hunger is still present since the signal isn’t getting to the brain efficiently.

Cortisol is a hormone produced by the adrenal glands that literally impacts the entire body by decreasing inflammation, regulating the stress response and circadian rhythms, and controlling blood sugar.

If blood sugar is high, cortisol stimulates the storage of sugar in the liver as glycogen. If you have cortisol dysregulation (adrenal fatigue or excess cortisol), your normal regulatory functions don’t occur properly, resulting in blood sugar dysregulation.

Cortisol follows a natural rhythm, peaking in the morning and falling throughout the day. Measuring this curve is best achieved through a salivary or dried urine cortisol test with four measurements.

Metabolic Inflammatory Testing

Homocysteine is an amino acid produced as an intermediate product in the metabolism of the amino acids methionine and cysteine (the process is called methylation).

If methylation doesn’t occur properly due to a lack of key nutrients like B12, B6, and folic acid, or because of a genetic mutation (MTHFR), homocysteine levels can rise in the blood.

Elevated homocysteine is associated with an increased risk of Alzheimer’s, cardiovascular disease, and stroke, since it directly damages the lining of the blood vessels. People with poor blood sugar regulation and diabetes are at an increased risk for elevated homocysteine.

C-reactive protein (CRP) or high sensitivity CRP (hsCRP) is an acute phase reactant protein produced mostly in the liver in response to inflammation. Elevated CRP is highly associated with metabolic syndrome, diabetes, high blood pressure, and cardiovascular disease, as they share the common root cause of inflammation.

Apolipoprotein B (ApoB) is a protein involved in fat metabolism and is a component of low density lipoproteins (LDL), also known as “bad” cholesterol. Elevated levels are associated with insulin resistance, high cholesterol, atherosclerosis, and heart disease.

ApoB100 is an even more specific marker, as only one molecule of ApoB100 attaches to each LDL particle, allowing for the total number of lipoproteins in circulation to be quantified. ApoB100 is a better marker of cardiovascular risk than LDL.

Lipoprotein a (Lp(a)) consists of an LDL particle bound to the protein apoA. Levels of Lp(a) have a significant genetic component, and levels remain relatively constant over your lifetime. Elevated Lp(a) is a risk factor for cardiovascular disease.

Lipid Testing

Lipid testing determines whether or not a person’s cholesterol-carrying proteins are healthy or not. The standard lipid panel that measures LDL (low density lipoprotein), HDL (high density lipoprotein), and triglycerides measures total serum lipid numbers only. It can be a good general marker of cardiovascular disease (CVD) risk, especially when viewed with other biomarkers such ApoB and Lp(a).

Elevated levels of LDL and triglycerides, especially when taken in the context of other biomarkers, are associated with an increased risk of CVD, as is low HDL. This test is available through LabCorp and Quest and in expanded profiles from Spectracell, Genova Diagnostics, and Doctor’s Data.

Lipoparticle protein testing provides a more accurate assessment of your cholesterol and cardiovascular risk, as it measures the particle numbers and density. When considering each lipoprotein, size does matter. For example, LDL particles can be small, medium, or large, and the amount of cholesterol within the particles varies widely. Smaller particles are more predictive of cardiovascular disease and plaque buildup, since they can penetrate the arterial walls where the larger particles can’t.

Remnant lipoproteins (RLP) and intermediate density lipoproteins (IDL) are also associated with increased CVD risk. Large, buoyant HDL (HDL2) corresponds to a decreased risk of CVD. LabCorp and Quest offer this and call it VAP testing. Spectracell calls it Lipoparticle Protein Testing, and Genova has the CV Health Profile.

All testing that we’ve discussed can be done through Direct Labs, who has contracts with the traditional and newer labs. If you’re experiencing any of the symptoms mentioned earlier in this article, it could be worthwhile to get some simple testing done so you can know where you stand and make corresponding changes, if and where necessary.

Save

How to Test for Hidden Food Allergies or Sensitivities

This article originally appeared on Healevate.

If you’re experiencing a variety of health symptoms and have no known food allergies or sensitivities, you might wonder why you’d need to test yourself for them. You may believe that simply cleaning up your diet and eliminating soda, baked goods, sugar, and processed foods is enough. And while that’s certainly a good start, it’s not nearly enough to eliminate the immune and inflammatory processes that food reactions can cause.

Since eating is such an automatic process for most of us, we never stop to consider whether the symptoms we’re experiencing are related to food unless the reaction occurs while we’re actually eating or very soon thereafter.

If you have brain fog, fatigue, congestion, rashes, joint pain, or headaches, there’s a pretty good chance that your body is reacting to something you’re eating.

For many people, food is the most inflammatory substance they encounter on a daily basis. Because we eat multiple times a day, and because we’re creatures of habit, we tend to consume the same things, giving the immune system the opportunity to react.

Food sensitivities and allergies cause many symptoms, especially if you have a leaky gut. Any symptoms of inflammation or autoimmunity can point to food intolerances, so the list is vast.

Symptoms of Food Allergies and Sensitivities

The symptoms of food intolerance can manifest quickly, as with a swollen tongue or anaphylaxis, but quite often the symptoms are delayed. This makes them hard to pick up on, as well as attribute to a certain food.

Immune/inflammation: Allergies, asthma, runny nose, post nasal drip, unresolved infections, autoimmunity, swelling, wheezing, coughing, anaphylaxis, throat closing.

Skin/hair/nails: Dermatitis, eczema, acne, rashes, scaly skin patches, hives, photosensitivity (sun sensitivity), hair loss, nail pitting, dry eyes, skin, and mouth.

Gastrointestinal: Stomach pain, GERD (acid reflux), IBS, gas, bloating, nausea, diarrhea, constipation, gastroparesis (delayed stomach emptying), canker sores.

Brain and mood: Headaches, brain fog, inability to focus or concentrate, double vision, blurred vision, poor memory, depression, anxiety, irritability, fatigue, lethargy, dementia, insomnia.

Nerves: Tingling, pins and needles, numbness, paresthesia.

Hormones: High or low blood sugar, weight gain or loss, excessive sweating.

Musculoskeletal: Joint and muscle pain, muscle weakness, fibromyalgia.

Liver: Poor detoxification, chemical sensitivity.

Cardiovascular: Low blood pressure, rapid heart rate, palpitations.

The First Food Allergy or Sensitivity Test To Perform

The first method of screening isn’t a lab test at all. It’s an elimination diet. Eliminating the most common sources of food intolerances is a great way to find out if you have an issue.

Removing gluten, dairy, corn, soy, eggs, and nuts from your diet for 4 weeks, then adding them back one single food (not food group) at a time over a period of 3 days should tell you whether your body is reacting to something.

If you have a known autoimmune condition, you may also want to include the nightshade vegetables, such as tomatoes, potatoes, sweet and hot peppers, eggplant, and spices made from these, as well as gluten cross-reactive foods like coffee, chocolate, and the gluten-free grains.

If any of the previously mentioned symptoms appear during that 72-hour window, you should avoid that food for at least 6 months to give your immune system a break and let the inflammation go down.

This method can you help you to identify the source of your food troubles, but for some, reactions can occur to even the healthiest foods, such as blueberries or spinach, especially if they have a leaky gut. To further complicate matters, not only do the foods themselves cause a response, but the additives, colorings and gum resins (binders used in gluten-free foods) do as well. This is where testing can be valuable.

Food Allergies vs Food Sensitivities

Food allergies and sensitivities are very different issues. A food allergy occurs when the immune system identifies a food as a foreign substance and attacks it. This response occurs on a spectrum and can be anything from a swollen tongue to anaphylaxis, which is a potentially life-threatening reaction.

Food allergies are tested by measuring antibodies in the blood against particular foods. IgE and IgG are commonly measured. If you have an obvious response to a food, you can confirm it with this type of testing.

Food sensitivities are the more common and elusive form of food intolerance. They’re more vague than allergies and are considered to be any toxic or inflammatory response to food. Quite often they’re mediated by a lack of enzymes, stomach acid, and/or a leaky gut. Celiac disease is a perfect example, where a severe intolerance to gluten causes the destruction of the surface of the small intestine.

Testing for food sensitivities offers a variety of options; antibody and mediator release testing (MRT) are two of the better ones available. No matter what test you choose, be aware that if you have a leaky gut, there’s a good chance you’ll be reacting to many of the foods you eat.

Food Allergy and Sensitivity Tests

There are several types of testing available for identifying food allergies and sensitivities. IgE testing represents the true food allergy test. IgG testing can also identify allergies, but more commonly, it shows delayed sensitivity reactions. The rest of the testing options are for intolerances or sensitivities only.

  • IgE antibody test
  • IgG and IgA antibody test
  • Gluten and gluten cross-reactivity tests
  • MRT test

IgE Antibody Testing for Food Allergies

Antibodies are produced when your body mounts an immune attack on a substance it has identified as foreign, which in this case is food. It creates antibodies against specific proteins (antigens) in that food. Antibody tests measure your body’s immune response to a particular substance or organism.

There are several categories of antibodies. IgE antibodies are created when your body has a true allergic response to a substance, which is why traditional food allergy testing analyzes antibody levels in the blood. An IgE allergy is considered a fixed allergy in that it will almost always provoke an immune response when the food is consumed. This type of food allergy elicits an immediate response.

This test can be completed by traditional labs such as LabCorp or Quest, as well as the specialty lab companies Alletess Medical Laboratory and Great Plains Laboratory. IgE testing can easily be ordered online through Direct Labs.

IgG and IgA Antibody Testing for Food Allergies and Sensitivities

In spite of having an allergy, you can still yield a negative IgE test result. This is why it’s important to test IgG levels as well. IgG antibodies measure a delayed hypersensitivity reaction, which can take up to 72 hours to occur. These are the more difficult reactions to link to a particular food, so testing can be helpful here. IgG antibodies are the most prevalent antibodies in systemic circulation and are the most common form of immune-mediated food responses.

While some IgG responses represent true allergies, most are hypersensitivities or intolerances. Similarly, IgA antibodies also represent delayed hypersensitivities. They can take many hours or days to occur and operate in a low-and-slow manner.

Traditional labs such as LabCorp or Quest will offer this test. Genova Diagnostics offers an IgG test. Alletess Medical Laboratory offers stand-alone IgG testing, combined IgG and IgE testing, and IgA testing. Cyrex Laboratories offers the Array 10: Multiple Food Reactivity Screen that measures IgG and IgA levels. The Array 10 tests raw and cooked foods, additives, gum resins, and brewed beverages.

All of these IgG and IgA tests can be ordered online through Direct Labs.

Gluten and Gluten Cross-Reactivity Tests

If you suspect that you’re sensitive to gluten, or even have full-blown celiac disease, testing is an important piece of the puzzle. Gluten testing involves analyzing the IgG and IgA response to various components of the gluten molecule, including several gliadins, glutenins, gluteomorphins (made during the digestion of gliadin), and the intestinal enzyme transglutaminase. It’s important to note that you must consume gluten for this test to be as accurate as possible.

Once you confirm gluten intolerance or celiac disease, completing gluten cross-reactivity testing is helpful, since these foods elicit the same response from the immune system as gluten does. This means that they contain similar protein sequences as the gluten molecule (molecular mimicry). Milk, whey, chocolate, coffee, soy, potatoes, corn, eggs, and most gluten-free grains (including rice) are considered cross-reactive.

Conventional lab companies offer gluten testing and the Array 4: Gluten Associated Cross-Reactive Foods test. This test can be ordered online through Direct Labs.

Mediator Response Test (MRT)

The MRT utilizes different technology than antibody testing. It quantifies the inflammatory response to specific foods and additives. Mediator release refers to the inflammatory chemicals that are liberated from your cells in response to a sensitizing food.

Instead of measuring antibody production, this test measures your white blood cells’ chemical response to a food. It gauges the cells’ change in volume, which comes from the release of inflammatory chemicals such as histamine and cytokines. A non-reactive food will produce no change, while a reactive food will produce an increase or decrease in cell volume.

This is a blood test and is only offered by Oxford BioMedical Technologies.

The Bottom Line on Food Allergy and Sensitivity Tests

Start with the basics and conduct an elimination diet. That alone will give you new information to work with. From there, spend money only on the testing that could reveal new information that would alter your approach to food. If you’re already 100% gluten-free and are avoiding all cross-reactive foods as well, then gluten testing would be a waste of time and money.

So be smart and be proactive. Discovering hidden food allergies or sensitivities could make a huge difference in your day to day health.

Save

Save

Why Taking Care of Your Liver Will Leave You Feeling Shiny and New

This article originally appeared on Healevate.

Most of us have felt that special feeling. You know the one. Great night out with friends, maybe even a special someone. And then the next morning rolls around. THAT feeling.

You wake up to a pounding head, nausea, aches, brain fog and an inability to focus. That’s your liver screaming at you.

Those extra few drinks just needed to happen, huh?

So those are obvious signs that we recognize easily, but did you know that when your hormones are out of whack, your blood sugar is erratic, and you constantly feel sluggish, your liver is STILL speaking to you?

Most of us are great at listening to our bodies when we experience something as uncomfortable and excruciating as a bad hangover, but we’re more likely to ignore the signs when they’re less obvious or when they require lifestyle changes that we may not want to make.

The liver is the largest internal organ and has extraordinary resiliency, as it’s bombarded daily with an onslaught of assaults from air pollution, environmental toxins, medications, and microorganisms (bacteria, mold, fungi, and viruses).

We are exposed to 6 million pounds of mercury and over 2.5 billion pounds of chemical toxins each year,” according to Dr. Mark Hyman.4 But the amazing liver isn’t fazed—it has the highest regenerative capacity of any organ in the body.

It’s clear that it takes a lot to knock the liver down, but somehow, in our crazy, high-stress lives, we find a way to do just that.

Impaired detoxification and liver function is the predecessor of many systemic diseases, including liver disease. At least 30 million people, or 1 in 10 Americans, has some type of liver disease.1

If you consider some of the other conditions where liver function is important, including autoimmunity, cancer, cardiovascular disease, diabetes, and high cholesterol, it’s obvious that proper liver function and detoxification are central to health. So it’s important that we recognize the signs of impaired detoxification before it has the chance to become a full-blown condition, because reversing it is much easier than reversing most chronic diseases.

What Exactly is Liver Detoxification?

Detoxification is the process of transforming and removing harmful substances from the body. Normally, the liver takes a toxic substance, then neutralizes and transforms it so that it can be eliminated in a healthy way that doesn’t damage the body.

Once your liver detoxifies and breaks down a substance, it’s excreted to the blood or bile for elimination. Blood products are filtered through the kidneys and eliminated as urine, while bile products are sent to the intestines and eliminated as feces. Some items are also eliminated through sweat and breathing.

When detoxification doesn’t occur efficiently and properly, the liver becomes taxed and sluggish, which impacts almost every system of the body in some way. The liver plays a role (to varying degrees) in most biological functions, being responsible for over 200 tasks. Here is a short list of some other liver functions that detoxification impacts:2,3

  • Conversion of harmful ammonia to urea
  • Clearance of bilirubin (if there’s a buildup of bilirubin, the skin and eyes turn yellow in a condition called jaundice)
  • Storage of essential vitamins and minerals, and conversion to their biologically active forms
  • Regulation of amino acid and protein metabolism
  • Maintenance of hormone balance

Impaired detox results in changes to all of the above processes, which can manifest as imbalanced hormones, high cholesterol, blood sugar abnormalities, decreased immune function, increased inflammation and pain, and a variety of symptoms ranging from fatigue and brain fog to rashes and headaches.

How Does Liver Detoxification Become Impaired?

Impaired liver detoxification occurs when any substance or disease process compromises the liver’s ability to perform its basic metabolic functions.

When your liver can’t function properly, toxins and metabolic waste back up and accumulate in your body, making you feel horrible and causing damage to your cells.

A good way to imagine this is to think about it like taking out the trash. If you empty the waste bins throughout your house daily, even every couple of days, you’re probably in good shape.

But what if you let it pile up for a month, or even a year? Pretty soon you’re looking like you belong on a late-night cable TV show because your house is teeming with bacteria, mold, parasites, and volatile chemicals, soon to be deemed uninhabitable by the health department. When your liver can’t empty the trash on a continual basis, this is what happens inside your body.

Damage to your liver cells can occur through a variety of mechanisms:3

  • Metabolic disorders such as obesity, diabetes, and fatty liver
  • A high sugar and carbohydrate diet or processed foods
  • Illnesses that produce toxins and inflammation or promote malabsorption
  • Infections such as Candida, viral hepatitis, and any GI infection/dysbiosis
  • Drugs and supplements
  • Pollutants, chemicals, and heavy metals such as BPA, parabens, smog, pesticides, fluoride, mercury, arsenic, etc.

What all of these processes have in common is that they damage liver cells in some form, whether from oxidative stress, inflammation, or a lack of the nutrients the liver needs in order to work properly. The damage results in impaired detoxification systems.

Detoxification processes in the liver are controlled by many genes and the Phase 1, 2, and 3 detoxification pathways. In order for detoxification to occur properly, the genes that control the process need the correct nutrients and environment (epigenetics) to properly regulate the enzymes that control the detoxification pathways.

One group of genes that have received publicity lately are the methylation pathway genes (MTHFR, MTRR, CBS, COMT, etc.), and rightfully so. This group of genes plays a central role in detoxification, as well as neurotransmitter, hormone, and amino acid metabolism, cardiovascular health, DNA synthesis, and gene regulation.

Sometimes there are changes in a gene—SNPs, or single nucleotide polymorphisms—that alter the function of the corresponding enzyme that controls a process such as detoxification.

When you have an SNP, it changes the gene’s instruction manual, which alters the way the enzymes work.

For instance, if you have one copy of an MTHFR (methylene tetrahydrofolate reductase enzyme) gene SNP, you’ll have a 30% reduction in the activity of the enzyme. If you have 2 copies of the SNP, you’ll have a 70% reduction in enzyme activity and significantly impaired detoxification. Many people have multiple SNPs in this pathway, resulting in reduced detoxification capacity.

Similarly, the 60 cytochrome P450 (CYP450) family of enzymes that are primarily found in the liver play a significant role in the breakdown of toxins. SNPs affect the CYP450 enzymes as well—especially those involving drug metabolism.

“Depending on the gene and the polymorphism, drugs and supplements can be metabolized quickly or slowly. If a cytochrome P450 enzyme metabolizes a drug slowly, the drug stays active longer and less is needed to get the desired effect. A drug that’s quickly metabolized is broken down sooner, and a higher dose might be necessary to be effective. Cytochrome P450 enzymes account for 70 to 80 percent of enzymes involved in drug metabolism.”5

The Phase I detoxification system is controlled by these CYP450 enzymes and is the first step toxins go through in the breakdown process. Once toxins enter this pathway, the substance undergoes a chemical transformation, producing an intermediate that’s often as toxic or more toxic than the original substance.

This isn’t a big problem if your Phase 2 detoxification pathways are sufficient, but there can be SNPs here too, reducing the process’ efficiency and causing you systemic problems.

Phase 2 detoxification reactions involve the conjugation (coupling) of the Phase 1 intermediate to a substance, making it water-soluble and suitable for elimination via urine and bile (feces).

The Phase 2 conjugation reactions are glucuronidation, sulfation, methylation, acetylation, amino acid conjugation, and glutathione conjugation.

Essentially, what’s happening in all of these processes is that the intermediate is combined with a specific type of molecule that neutralizes it for elimination. For example, in methylation, a methyl group (CH3) is transferred to the intermediate. Once this process takes place, the neutralized substance can be eliminated.

Phase 3 of detoxification takes the neutralized substance and transports it out of the liver cell to be excreted in the urine or bile.

Diet, nutritional status, illness, toxic burden, dysbiosis, and SNPs all affect the efficiency of the detox pathways, and vice versa. Identifying any potential roadblocks and cleaning up your personal environment and/or lifestyle is necessary to have detoxification systems running at peak performance.

Triggers of Impaired Liver Detoxification

We have toxins around and inside us that come in many forms. If we don’t have healthy detox processes, they accumulate and cause damage all over our bodies. Common triggers of impaired liver detoxification are:

Diet: High sugar and carbs, processed foods, charred foods, xenoestrogens, water, GMOs, and conventionally-raised meats contain toxins.

Nutrients: Low levels of necessary amino acids, vitamins, and minerals impede efficient detoxification processes.

Dysbiosis: Infections and an imbalanced microflora produce toxins.

Leaky Gut: Increased intestinal permeability allows toxins into circulation that wouldn’t normally enter the bloodstream.

Toxins: Medications, supplements, alcohol, and environmental chemicals and metals burden the detoxification pathways and can directly damage the liver.

Stress: Psychological stress, toxic relationships, and illness produce biochemical changes that impair detoxification.

Diet

Dietary triggers of impaired liver detoxification are many and significant, since you eat multiple times every day. This provides lots of opportunities to ingest something harmful.

High sugar and carbohydrate diet: When you eat excessive sugar and carbohydrates or refined foods, they need to be stored somewhere if you aren’t using them for energy. They end up stored in the body as fat and in the liver as glycogen.

Over time, if this process continues, the liver becomes inundated with fat, which compromises its function and promotes inflammation and insulin resistance, according to Dr. Mark Hyman.6

Processed foods: Any foods that come from a package may contain trans fats, preservatives, colorings, dyes, additives, and artificial sweeteners that are seen as toxins by your body. Additionally, some foods you think are safe may not be. Most cans are lined with BPA, rendering the foods inside very unhealthy.

According to Dr. Joseph Mercola, “High acidity—a prominent characteristic of tomatoes—causes BPA to leach into your food. BPA is a toxic chemical linked to reproductive abnormalities, neurological effects, heightened risk of breast and prostate cancers, diabetes, heart disease, and other serious health problems.”7

Charred/browned foods: Cooking foods until they have color may impart lots of flavor, but you’re also getting a hefty dose of toxins along with it. Grilling is the worst culprit.

Dr. Mercola says, “Heterocyclic amines (HCAs) are hazardous compounds created in meats and other foods that have been cooked at high temperatures.

Similarly, polycyclic aromatic hydrocarbons (PAHs) form when fat drips onto the heat source, causing excess smoke, and the smoke surrounds your food, transferring cancer-causing PAHs to the meat.”7 HCAs and PAHs are also present in deli meats.

Xenoestrogens: Xenoestrogens are substances that mimic the hormone estrogen. Foods and chemicals are sources of these compounds. Not only are they endocrine disruptors, but also toxins and carcinogens. Soy is the most common dietary source. Consumption of soy is linked to infertility, thyroid disruption, and breast and prostate cancers. Toxins produced in the processing of soy include nitrosamines, lysinoalanine, MSG, and aluminum.7

Water: Water can be one of the most toxic things we consume daily. Water can have microorganisms, chlorine, fluoride, agricultural and manufacturing runoff, pesticides, or heavy metals. Dr. Deanna Minish states, “Current estimates suggest that there are more than 2,000 toxins in tap water.”14 Bottled water is often not much better.

GMOs: Genetically modified foods contain genes that aren’t native to the original organism, and your body sees them as foreign and toxic. Corn, for instance, might contain Bt toxin or Roundup Ready genes so that it withstands pests better. These toxins degrade the stomach of the target insects and are now found to be harming humans, causing allergies and immune system activation similar to that of inflammatory conditions.8

Further, the pesticide Roundup (glyphosate) has been proven to have harmful mechanisms. According to Dr. Mercola, a recent study found that “glyphosate inhibits cytochrome P450 (CYP) enzymes, a large and diverse group of enzymes that catalyze the oxidation of organic substances.” This, the authors state, is “an overlooked component of its toxicity to mammals (which means humans).

By limiting the ability of these enzymes to detoxify foreign chemical compounds, glyphosate enhances the damaging effects of those chemicals and environmental toxins you may be exposed to.”9

Conventional meat and produce: Food grown or raised with conventional methods (non-organic) has some level of toxicity. Meat, poultry, and fish can be given antibiotics and drugs that affect their growth.

Vegetables and fruit can contain pesticides or be genetically engineered. One potent class, the organophosphates, are linked to infertility and impaired growth and development, and they’re known neurotoxins.

Nutrients: In order for detoxification to proceed the right way, it requires adequate amounts of the necessary raw materials to do so. These include amino acids, B vitamins, minerals, antioxidants, and sulfur-containing compounds. Deficiencies will result in impaired detox processes.

Dysbiosis

Dysbiosis occurs when there’s an imbalance between the beneficial and harmful organisms in your body, especially in the gut.

When this happens, the bad guys can produce toxins themselves or even undo all of the work the liver has done (deconjugation), allowing toxins back into circulation. While many organisms produce toxins (bacteria, mold, yeast, and parasites), here are some examples:

Candida: Yeast ferments sugars into ethanol and acetaldehyde, which are carcinogens that cause alcohol toxicity and hangovers. Candida increases levels of ammonia, which is another toxin.3 Yeast also produces toxins that allow them to bore into the intestinal wall, as some parasites and bacteria do.12

Clostridium difficile: Also known as C. diff, this bacteria produces several toxins that act on the gut and other cells of the body. These toxins are responsible for the awful diarrhea associated with an acute C. diff infection.

Mold: Molds are ubiquitous and often ingested in air and food. According to Dr. Jill Carnahan, “Some molds secrete mycotoxins. Exposure to mold and mold components is well known to trigger inflammation, allergies and asthma, oxidative stress, immune dysfunction, and neurological damage in humans.”13

Leaky Gut

Increased intestinal permeability, also known as leaky gut, occurs when the cells that line the intestinal tract become irritated and compromised, actually spreading apart and allowing particles that wouldn’t normally enter the bloodstream to pass through. This causes the immune system to react to these substances, producing inflammation.

Some of the irritants that cause leaky gut are toxins ingested in medications, alcohol, food, and water, as well as the byproducts of any allergic or sensitivity reaction. Further, dysbiosis and any gut infections compound this effect by the contribution of the toxins they produce.

When you have a leaky gut, your overall toxic burden is increased, because many more substances enter circulation than usual, and your liver has to detoxify all of them. This can place a significantly increased burden on the liver.

Toxins

Toxins are everywhere in our modern society. Unfortunately, our exposure to medications, supplements, chemicals, pesticides, pollutants, petrochemicals, heavy metals, tobacco smoke, and even alcohol are byproducts of contemporary living, and most of us have exceeded our liver’s natural capacity to cleanse us. If we can’t rid ourselves of these toxins, they accumulate and are stored in the body.

Heavy metals are everywhere—in the soil, in our homes and food, and as byproducts of industries, car exhaust, and tobacco smoke, so they’re hard to avoid. Things like lead, mercury, arsenic, cadmium, and aluminum are damaging toxins by themselves, but they also compromise our detoxification pathways, making matters worse.

According to Dr. Mark Houston, “Mercury, cadmium, and other heavy metals have a high affinity for sulfhydryl (SH) groups, inactivating numerous enzymatic reactions, amino acids, and sulfur-containing antioxidants (NAC, ALA, GSH), with subsequent decreased oxidant defense and increased oxidative stress.”15

This means reduced antioxidant and detox capacity. He further states, “Mercury induces mitochondrial dysfunction with reduction in ATP, depletion of glutathione, and increased lipid peroxidation; increased oxidative stress is common.”15

Persistent organic pollutants (POPs) include PCBs, DDT, dioxins, pesticides, flame retardants, Triclosan (the antibacterial chemical in personal care and cleaning products), and other chemicals. Like other toxins, they’re heavily present in food, water, soil, air, and products we use.

Over 80,000 POPs have been released into the environment, and we lack information on how they affect human health. We know they’re particularly toxic, causing infertility and endocrine hormone disruption as well as being immunotoxic, neurotoxic, and carcinogenic.16 They’re also linked to cardiovascular disease, obesity, and diabetes.16

Even medications and supplements can have adverse effects on detoxification by damaging the liver. Certain prescription and over-the-counter drugs list liver damage as a side effect and a risk. Some of these include antidepressants, antipsychotics, corticosteroids, non-steroidal anti-inflammatory medications (NSAIDs) (particularly acetaminophen (Tylenol)), and others.3 Some herbal supplements are implicated here as well since they can be toxic to the liver if not used appropriately, such as kava kava, skullcap, and germander.

Stress

Not only do we have toxins that come from the outside, but we also generate them from within. Psychological stress, toxic relationships, illness, and anything else that disrupts your body’s natural balance produces biochemical changes that impair detoxification. But to fully understand toxicity, you must understand the concept of total load.

Dr. Mark Hyman explains this idea well. “This is a total amount of stressors on your system at any one time, and what happens is like a glass filling over with water. It takes a certain amount to fill the glass, and then, after a certain point, you put more in and it overflows. When our detoxification system is overwhelmed, is overloaded, that’s when we start getting symptoms and get sick, but it may take years of accumulated stress and toxins to get to that point.”18

He further points out that stress is a significant contributor to the total toxic load, including “the mental, emotional, and spiritual toxins that affect us; isolation, loneliness, anger, jealousy, and hostility, which all translate into toxins in our system.”18

Dr. Deanna Minich elaborates on that concept, stating, “When we don’t properly ‘eliminate’ unhealthy emotions, we may experience increased levels of stress. Stress not only causes inflammation, but can elicit poor digestive function. Those who experience chronic stress have a difficult time maintaining a positive outlook on life and are at greater risk for disease and premature death.”17

Chronic stressors cause an imbalance between the sympathetic (fight or flight) and parasympathetic (rest and digest) nervous systems, producing increased levels of the stress hormone cortisol. Over time, the constant cortisol elevation and demand leads to cortisol resistance and diminished cortisol.

Cortisol is the main anti-inflammatory hormone in your body, and when levels are low, inflammation increases. This results in oxidative stress and free radical damage. This in and of itself can damage the liver, but it also increases the toxic load the liver must clean up. Further, these changes can also perpetuate dysbiosis and leaky gut.

Symptoms of Impaired Liver Detoxification

The symptoms of impaired liver detoxification are system-wide in the body.

Inflammation/immune: Pain, weight gain, lipomas (benign fatty tumors/deposits), cellulite, allergies, autoimmune conditions, recurrent infections, stuffy nose

Digestive/gastrointestinal: Gas, bloating, cramping, pain, diarrhea, constipation, inability to digest fats (oil in toilet or greasy stools), reflux (GERD), IBS, gallstones, nausea, bad breath, food sensitivities, allergies

Blood sugar: Hypoglycemia (low blood sugar), fatty liver, Type 2 diabetes, cravings

Brain/mood/energy: Brain fog, dizziness, vertigo, fatigue, lethargy, depression, irritability, poor concentration, headaches, poor sleep, poor memory

Musculoskeletal: Chronic fatigue syndrome, fibromyalgia, muscle pain, joint pain

Skin/hair/nails: Rashes, hives, dermatitis, eczema, pruritis (itchy skin), excess or lack of sweating, acne, rosacea, liver spots (brown spots), red skin, flushed face, red/itchy palms, yellow skin or eyes, itchy eyes, dark eye circles, body odor, hair loss, cankers

Hormones: Hormone imbalances, PMS, severe menopausal symptoms, inability to lose weight, infertility

Detoxification: Multiple chemical sensitivity (MCS), inability to tolerate medications or alcohol, poor tolerance to hormone treatments

Lab Testing for Impaired Liver Detoxification

Liver function and organic acid testing is important so you know the state of your liver and detoxification pathways. When considering toxin testing, you need to be cautious, because some of the tests actually liberate toxins from storage in your cells, which can cause problems, especially if you have a leaky gut.

In general, it’s a good idea to make sure liver function has improved and the gut is healthy before testing and treating toxins.

General tests for liver function and blood sugar:

  • Total bilirubin
  • AST (aspartate aminotransferase)
  • ALT (alanine aminotransferase)
  • GGT (gamma glutamyl transpeptidase)
  • ALP (alkaline phosphatase)
  • Fasting insulin and glucose
  • CMP or comprehensive metabolic panel (will have most of the liver tests on it)

Functional tests:

  • Organic acids
  • Amino acids—urine, blood
  • Heavy metals testing—hair, urine, feces, blood, red blood cell
  • Toxic chemicals (such as BPA, phthalates, parabens, organophosphates, etc.)
  • DNA profiles for methylation and detoxification

Treatment of Impaired Liver Detoxification

Supporting healthy and robust detoxification takes a little effort. Cleaning up your diet,environment, and lifestyle and adding in some supporting nutrients will lighten the load on your liver.

Detoxifying your diet is a good place to start, since we consume foods and liquids many times every single day.

Drink lots of water every day! Have at least eight glasses to flush your system. Add some liver for an added boost.

Eating organic and GMO-free will help you avoid many toxins.

Make sure your diet is rich in phytonutrients. Certain plants are known to support detoxification. The Brassica family, which includes broccoli, cabbage, cauliflower, and kale, contains the sulfuric compounds sulforaphane and indoles (I3C) that activate the Nrf2 gene, which increases many of the detoxification enzymes, especially in Phase 2.10,11,20 Garlic also has sulfur compounds that exert the same effect. Other Nrf2 activators include curcumin from turmeric, capsaicin from hot peppers, and resveratrol from grape skin or wine.11,20

Many leafy green herbs and plants support detoxification, including dandelion greens, cilantro, parsley, watercress, and chard. Use them in cooking, salads, smoothies, and juices.11,19

Artichoke, asparagus, and beets are healing to the liver with antioxidants that prevent liver damage. Artichoke is also one of the best stimulators of bile flow.11,19

Be sure to wash your produce well—even if it’s organic.

Cook with lower temperatures to avoid generating harmful chemicals. If you must grill, marinating with olive oil, lemon, and herbs such as rosemary, thyme, and oregano will help decrease the amount of HCAs and PAHs formed.

Avoid packaged foods as much as possible, including drinks in plastic bottles.

Invest in a water filter that filters out chlorine, fluoride, metals, and microbes. Most sink-mounted and pitcher systems don’t do this.

Drinking green tea also supports Phase 1 and 2 detoxification pathways by increasing CYP activity.11,20

In addition to detox-supporting foods, there are nutrients obtained in supplements that directly support the liver and detoxification process.

Amino acids: This is one of the most critical nutrient groups, as these acids function in the detoxification process itself and serve as antioxidants.

N-acetylcysteine (NAC) is the precursor to glutathione, the master antioxidant of the body and a significant component of Phase 2 detoxification.

Cysteine and methionine contain sulfur and contribute to the sulfation pathways. Methionine is also a methyl donor to the methylation pathway in its activated form, S-adenosyl-methionine (SAMe). Glycine also performs conjugation down the glycination pathway.10,20

Glutathione: Taking glutathione itself as a supplement or through IV therapy is helpful when levels need to be increased.

B vitamins: The B complex vitamins, especially B5, B6, B12, and folic acid are significant co-factors in the Phase 1 and 2 detoxification reactions that help drive the reactions forward. The methylation pathway is also very dependent on sufficient levels of B12 and folic acid.

Minerals: Iron, magnesium, zinc, and selenium are all minerals that support the detoxification process as co-factors or through antioxidant functions.20

Antioxidants: Antioxidants such as alpha lipoic acid (ALA), vitamins A, C, and E, and flavonoids play an important role, since the detox process inherently produces free radicals that need to be quenched.10,11,20

Milk thistle: Silymarin is the polyphenol in milk thistle that promotes detoxification. The antioxidant capacity of silymarin can lower the liver’s oxidative stress associated with toxin metabolism, which has the effect of conserving cellular glutathione levels.11

Calcium-D-Glucarate: This nutrient helps prevent the deconjugation of toxins in the intestines by bacteria, thus preserving them for excretion.

Probiotics: Probiotics will help maintain the balance between good and bad bacteria in the gut, which supports healthy elimination and immune functions that in turn support the liver.

Diet and nutrients can support the detoxification process itself, but the other half of the equation involves cleaning up your world.

Lifestyle changes involve some work, since they require you to read labels, investigate your personal environment, and make some changes, but the benefits to your health are worth it.

Start reading labels: The more you know about what you put in, on, and around your body, the better. If you can’t pronounce it, you should probably avoid it. Knowledge allows you to make healthier choices for you and your family.

Clean up your products: Choose more natural personal care products, toiletries, baby products, home cleaners (especially window and bathroom cleaners), and lawn fertilizers. These products are laden with preservatives and chemicals. Baking soda, coconut oil, white vinegar, lemon, and essential oils can fill many of these roles without the unwanted toxins.

Detox your furniture and home: Furniture, paint, flooring (especially carpet), and building materials also contain chemicals that give off gas, meaning they constantly emit these toxic compounds into the air and you breath them in. Opt for more natural materials like bamboo, latex, wool, and organic cotton.

Get some houseplants: Many houseplants such as English ivy, rubber plants, peace lily, golden pothos, spider plants, Boston ferns, queen ferns, and dwarf date palms are all great at filtering toxins from the air.

Air filters: Having HEPA filtration added to your heating and cooling system will result in more toxins and fine particulates being removed from your home air.

Open your windows: Indoor air can be more toxic than outdoor air, so open your windows and let your home and office breathe.

Shower filter: Invest in a shower water filter or a whole house unit. Your skin is the largest organ in your body (and the liver is the largest organ inside) with a high capacity for absorption. It will absorb toxins in the water you bathe in.

De-stress: Lower your stress levels by finding ways to either decrease your stressors and create boundaries or find appropriate outlets like talking, journaling, or exercising. Getting out into nature can be especially helpful.

Toxic relationships: If you have a person in your life who’s causing you to feel bad, hurt, angry, or frustrated, you should let them know if you can. If you can’t, then try to limit contact with them.

Sleep: Getting 8-9 hours of sleep per night is important, since this is when your body regenerates and heals.

Exercise: Movement is essential in keeping elimination going. Moving keeps your lymph and blood pumping, promotes bowel movements, counteracts inflammatory processes, and lets you sweat.

Sauna: Sweating is also a critical component of detoxification. You can do it through exercise or using a sauna. Saunas increase circulation and metabolic rate. Studies show that many metals, especially cadmium and nickel, are eliminated through sweat at higher levels than through urine.15

Bowel movements: Make sure you have 1-2 bowel movements per day. Daily elimination through the bowels, urine, and sweat are vital for proper detoxification.

Save